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Abstract—The dynamic stress intensity factor of an initially stationary semi-infinite crack in an
unbounded linear elastic solid which kinks at some time ¢, after the arrival of a stress wave is
obtained as a function of crack tip velocity v, kink angle J, time 7 and the delay time ;. A
perturbation method, using the kinking angle J as the perturbation parameter, is used. The solutions
can be compared with numerical results and other approximate results for the case of £ = 0 and
give excellent agreement for a large range of kinking angles. The results indicate that if 2 maximum
energy release rate is accepted as a crack propagation critcrion, then for both the incident stress
wave parallel to the original crack faces and uniform dynamic loading applied to the original crack
faces, the crack will propagate straight ahead of the original crack for any delay time.

INTRODUCTION

When dynamic loading is applied to a body with internal cracks, the resulting stress waves
may cause the stress intensity factor at any crack tip to become equal to the value required
for initiation of crack growth and continued crack propagation. The direction of propa-
gation, as well as the velocity of crack propagation, at the instant of initiation will depend
on the local stress field around the crack tip. To understand the observed bifurcation events
in brittle materials, the dynamic solution for cracks which suddenly branch or kink is
required. Most of the problems that have been solved involving dynamic propagation of
cracks, are restricted to geometries in which the line of crack propagation is straight.
Techniques have been developed to take into account time-dependent loading and arbitrary
variations in crack-tip velocity for a semi-infinite crack in an infinite, isotropic, linear-elastic
body. In a series of papers[1-4], Freund has essentially solved the general problem in mode
I. It is only recently that experimental techniques have been developed to provide enough
information about the dynamic cffects in a dynamic bifurcation test for comparison with
theoretical solutions. The method and resulits of these experiments are presented in a series
of papers by Ravi-Chandar and Knauss[5-8]. With progress being made in both the
analytical and experimental area, it now appears possible that there will be a good under-
standing of the bifurcation events in the near future.

It is only recently that correct solutions for the problem in which a crack kinks (or
bifurcates) have been given, Burgers and Dempsey[9] gave some closed form results in anti-
plane strain and Burgers{10] extended the range of these anti-plane results to all angles of
kinking (and bifurcation) using a numerical scheme. Dempsey et al.[11] have used a
conformal mapping technique to obtain the analytical solution for a kinking crack in mode
IIT under stress wave loading. In plane strain, Burgers[12] and Burgers and Dempsey({13]
solved the kinking and bifurcation cases numerically. An approximate method for both
mode III and mixed mode I-II crack kinking under stress-wave loading was used by
Achenbach er al.[14]. However, in all the results mentioned above, the problems have been
restricted to being self-similar in the radial coordinate and time. That is, it is assumed that
the new crack initiates out of the original crack tip at an angle at the same time as loading
is applied to the crack faces.
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To make the model more physically realistic, a finite delay time in the initiation of the
non-planar crack must be included. However, if we do so, the problem loses its self-similar
nature. The only solution available for this case is presented by Ma and Burgers[15] in
which a perturbation method described by Kuo and Achenbach([16] is used to obtain in a
simple closed form the dynamic stress intensity factor for the kinking crack under anti-
plane shear loading. The error of this approximate solution of the mode III stress intensity
factor with delay time #; = 0 when compared to the exact values in Ref. [11] is less than
10% for any kinking angle less than 90°; if the kinking angle is less than 45°, the error is
less than 2%.

The analysis undertaken here is an extension of the previous work[15] in which a
crack subjected to an anti-plane strain stress wave loading was solved. In Ref. [15], the
mathematics is less complicated so that the results can be obtained analytically. Also, the
case of a planar stress wave which is not parallel to the original crack can be solved for,
and the results indicate that for this case in mode III, if a maximum energy release rate
criterion is used, the crack will still initially propagate straight ahead before kinking. The
perturbation method for the plane strain case considered here is very similar to that used
in thc mode IIl case. There are principal differences in the basic mechanisms of crack
branching for the anti-plane and in-plane cases. Branches of a primary crack under pure
mode I (or mode II) loading generally are subjected to both mode I and mode II loading
conditions whereas mixed loading conditions do not occur in anti-plane strain. Analytical
results in plane strain with finite delay time are so far limited to the case when no kinking
occurs[2—4].

We consider the dynamic crack growth out of the original semi-infinite crack at an
angle to the original crack at some time after the longitudinal (or transverse) stress wave
loading initially interacts with the crack tip. A perturbation method is used to obtain the
first-order solution near the kinking crack tip. By setting the finite delay time ¢; to zero, this
solution agrees closely with the results in Ref. [14] up to the kinking angle of about 70°.
We find the solutions of the mode I stress intensity factor have the same accuracy as found
in the mode 1T case. The mode I1 stress intensity factor is also within 13% error if compared
to numerical results{12]. This good agreement suggests that the wedge geometry of the
kinked crack has only a minor effect on the dynamic stress intensity factor. When the
kinking angle ¢ is zero, the new crack will propagate straight along the original crack path,
and the solution will reduce to the exact solution shown in Ref. [3]. The energy flux into
the propagating kinked crack tip can be obtained from the dynamic stress intensity factors,
and these results are discussed in terms of an assumed fracture criterion.

DESCRIPTION OF PROBLEMS

We consider a stationary, semi-infinite, straight crack in an initially stress-free, isotropic
linear-elastic full space. The sharp crack, which will be referred to as the original crack, lies
along the negative x-axis with the origin of the coordinate system at the crack tip. The
incident longitudinal wave (or transverse wave) strikes the stationary crack tip at time ¢ = 0.
A short time later, at ¢ = ¢#;, a crack referred to as the new crack, propagates out of the tip
of the semi-infinite crack with a constant velocity v, (less than the Rayleigh wave speed)
making an angle 6 with the original crack. The geometry for the kinked crack under
consideration with the wavefront pattern for planar normal stress wave loading is shown
in Fig. 1.

The field solution for a kinked crack geometry can be considered as the superposition
of the field generated by diffraction of the incident wave by the stationary crack and the
field from the new crack faces subjected to crack-face tractions which are opposite in sign
to the stresses computed from the stationary crack problem. For in-plane problems, the
fields generated by kinking of a semi-infinite crack upon diffraction of a longitudinal or
transverse stress wave are extremely difficult to analyze. It involves coupled integral equa-
tions, which must be solved numerically, see Refs [12, 13].

For the anti-plane case, it was shown that the first-order approximation of the dynamic
stress intensity factor for a kinked crack can be expressed by the stress intensity factor for



Dynamic mode I and mode II crack kinking including delay time effects 899

z 8
! %
) W 4
gyl Y 5
X

57

Fig. 1. Stress wavefront pattern for a planar stress wave impacting a kinking crack.

a straight crack, propagating in its own plane, subjected to the negative of the traction
computed from the stationary crack problem along the line of the kinked crack, We follow
the same approach here for the in-plane problems. The procedures to construct the final
solution are similar to the anti-plane problem which was solved by Ma and Burgers[15]. In
the next section, some fundamental solutions needed for solving the dynamic stress intensity
factor of a kinking crack are presented.

REQUIRED FUNDAMENTAL SOLUTIONS

A homogencous, isotropic lincarly clastic medium is governed by the two-dimensional
wave equations

Vip—alp =0 (1

Vi —b3) =0 2)

N O

Equations (1) and (2) are the uncoupled wave equations. Because of their associated
modes of deformation, ¢ and y are referred to as the longitudinal and shear wave poten-
tials, a and b are the slowness of longitudinal and shear waves, respectively, u and p are
the shear modulus and the mass density of the material, and 1 is the Lame ¢lastic constant.

where

Normal and shear loading applied on the stationary crack
For the normal step loading applied uniformly on the crack faces, the deformation
will occur in mode 1. The following mixed boundary conditions on z = 0 are considered :

6l.(x,0,0) = —a H(f) for —w<x<0 (3a)
¢, (x,0,0=0 for —w<x<o (3b)
w(x,0,)=0 for 0 <x<oo. (3c)

Here w is the component of displacement in the z-direction, and H represents the unit step
function. The definition of the problem is completed by specifying zero initial conditions
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and by requiring the solution to satisfy the equations governing the motion of an elastic
solid. The details of the planc strain problem of diffraction of a pulsc by a stationary crack
have been presented by De Hoop[17), and only the pertinent results of the full field solutions
for stresses 8 < n/2 are presented

L ! (222 = b1 D(s) ! \
%— = J; Im [ﬁv}\(a—i-).)'”z : :Lh dH—L Im [dd(a—2)"2(b2 = 27) 2 D(s)jica, ds  (4a)

= J‘ Im [2(222 — %) (a— 1) *®(s));-,, ds——f Im [2(2A* - b?) (a— 1) *®(s)]i..a, ds

(4b)

(el

Ol ! (242 = %) (24 + B> - 2a%)D(s) d
I M a7 LE

—f’ Im [41(a—~ )" (b* - 17) P ®(s)lius, ds  (4c)

where

- Jaag — (B2 _ 2
Smkst@y T A-e)
s s? /2
A(s) = — - cos g+i o az) sin 6 (5a)
5 SZ 12
Ar(s) = — ~ cos 9+i(ﬁ - bz) sin 6 (5b)
1 [ 4y2(y2—a2)”2(b2 _y2)1/2 dy )
0 = _ -1
Si(l)—exp< n[, tan [ 7= 54i) (6)
0A[0s
®0) =205

¢ = 1/v, is the slowness of Rayleigh wave of the material and satisfies the equation
(26‘2 _bZ)Z +4C2(02 _CZ)IIZ(bZ _CZ)I/Z = O

As mentioned in Ref. [15], the second term which is O(1) in the asymptotic expansion
as r — 0 in eqns (4) will play a significant role in the crack kinking problem. The complete
result for the second term of this expansion has not yet appeared in the dynamic fracture
literature, to the best of our knowledge. By changing the integration on the real axis to the
complex plane and using the residue theorem, the results for the second term as r -0
can be obtained by evaluating the contributions from the poles. As r — 0, the first two terms
for the stresses are
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The first term shows the square root singularity as r — 0; the angular dependence
is the same as the static solution. The second term is a constant and depends only on the
magnitude of the loading o and the material properties.

For the shear step loading applied uniformly on the crack faces, the deformation will
occur in mode II. The boundary conditions are then

ol(x,0,) =0  for —0 <X < (8a)
o (x,0,0) = —a,H(f)  for —0<x<0 (8b)
u*(x,0,0)=0 for O<x< o (8¢c)

where u* is the component of displacement in the x-direction. The full field solutions for
stresses evaluated for 6 < /2 are

il 4 t
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B= %.1;;263'

For r — 0, the leading two terms of the asymptotic expansion of eqns (9) are

SAS 23:7-P
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Fig. 2. Normal and shear point loads propagating out with velocity u along the faces of the semi-
infinite crack, growing with speed o,
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where
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“o = ST ) T b? '

Normal and shear point loads varying linearly in time for a growing crack

The method of solution follows that described by Freund{1-4] and uses the superposition
of forces applied to the newly growing crack faces, to cancel out the stresses obtained along
the new crack line due to the normal and shear stress wave loading on the stationary crack.
This requires the solution for normal and shear point loads, which grow linearly with time
and propagate out from the origin along the new crack at constant velocity u as the crack
starts to propagate. Suppose that the crack tip is at rest at x= 0 and there are no loads
acting on the body for ¢ < 0. At time ¢ = 0, the crack tip begins to move in the x-direction
at speed v, and simultaneously a symmetric pair of concentrated normal forces appears at
the crack tip, tending to open the crack. For ¢ > 0, the concentrated forces begin to move
in the x-direction with speed u < v, as shown in Fig. 2. The magnitude of the forces
increases linearly in time. The boundary conditions are

(@2 (x,0,0) = (mt+nm)A(x—~ut)H({ty  for —00 <X <ot
(et (x,0,0=0 for —0 <X < (1)
w(x,0,)=0 for DI <X <00
where A is the Dirac delta function, m and n are arbitrary parameters which are independent

of x and ¢. The x-coordinate is eliminated in favor of a new coordinate ¢ = x—uv.t. The
exact solution of this problem can be obtained by means of Laplace transform methods and
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the Wiener—-Hopf technique. The normal stress on the plane z = 0 ahead of the crack tip is
given in Ref. [3] as

1 1 mh? w, (h) nhw, (h) e .
oncon=g: [ |, ([ 5] - o)) e o

(12)

where
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The slowness of the crack velocity is d = 1/v.; B, and B, are the usual inversion paths for
one and two-sided Laplace transforms. The parameter & = 1(v.—u) is the inverse of the
relative speed between the moving load and the crack-tip, and subscript 4 denotes dif-
ferentiation with respect to A. The stress intensity factor for the solution may be extracted
by examining the behaviour of eqn (12) as £ — 0%, with the result

2mh2w'+\/(2t)_ J2nhw ()
Jr(l—ajid)"*  (1—afd)'?/(nr)

ki'= lim (J@nd) (@l = (14)

where

. _Ow.(h)
Wi =—a

The other fundamental solution needed is very similar to eqns (11). Instead of applying
concentrated normal forces, we have concentrated shear forces appearing at the crack tip
and moving in the x-direction with speed «. The boundary conditions become

(65),(x,0,0) = 0 for -0 <X<®
(65,)2(x,0,0) = (mit+n)A(x—ut) H(1) for -0 < X < Ul (15)
u*(x,0,0) =0 for Ul < X < 00.

Following the same analysis as Ref. [3], we find the stress intensity factor for this
case is
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where
= s
Bz (h) = [bh(1 Fb/d)]'>.
This result first appeared in Ref. [18].
MIXED MODE CRACK KINKING DUE TO AN INCIDENT LONGITUDINAL WAVE
We consider the incident longitudinal stress wave of the form
ol, = o H(ty,—2). a”n
The stresses of the stationary crack problem in the polar coordinate are
O = Oho+ 09, 05, = 0h +05, (18a,b)

where

. aV
Oho = ao[l —2(;)) sin? 0] (19a)

. ay
O = Uo(;) sin 20 (19b)
d 1 I ] I : I
ahy = 5(] —cos 20)a,, + 5(1 +cos 20)a;, —sin 24 o, (20a)
d 1 : 1 1 H I i
i = ~5 sin 20 o, + 3 sin 20 g, +cos 20 o,, (20b)

where o},, o}, and ¢!, are given in eqns (4). The first-order approximation of the dynamic
stress intensity factor for a kinked crack with delay time ; can be expressed by the stress
intensity factor for a straight crack propagating in its own plane subjected to the negative
of the traction given in eqns (18) on the crack faces. This approximation is discussed more
fully in Ref. [15]. The boundary condition becomes :

(1) for the mode I stress intensity factor

6, =0 for ¥ <0 (21a)
0,, = dge(X/t,0 = 6) for O<x<v(t—1tg); (21b)
(2) for the mode II stress intensity factor

o, =0 for <0 (22a)

O = —05(%/1,0=8) for 0<%<u(t—1) (22b)
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where the X-axis lies along the kinked crack line and ¢ is the kinked angle as shown in
Fig. 1.

Mode I stress intensity factor

Using the superposition scheme described in Ref. [3], the stress intensity factor due to
the loading from the diffraction part of the stationary crack field (i.e. —a%) in eqns (21),
can be constructed by choosing m = —1, n= —* = —ht;/d, and replacing 1 by t—(* in
eqn (14) and integrating over the appropriate range of u = %/t. The mode I stress intensity
factor for the propagating kinked crack duc to this loading is

v (1 — i)t ) l
Kf(l,vc,5)=J Kf(m=—-1,n= —t*,t—t*)aﬁg(;,é) du
0

S Y B ]”2 By (d* — )77, o[ —" 6>dh
=, | st —aid) [w, (h) (d*—h)"*),0% =T’

where

The integral in eqn (23) is suited to integration by parts. The advantage of this is that
it reduces one order of integration which saves computation time. It also gives a more
tractable form than eqn (23), allowing us to get very simple closed form results in some
special cases. By careful analysis, we find that the function ¢, has a square root singularity
at h = d. Hence, if integration by parts is applied, neither the integrated term nor the
remaining integral will exist, even though the sum exists. To get around this difficulty, the
method given in Ref. [3] as applied in Ref. [15] is needed. The lower limit of integration in
eqn (23) is replaced by d+¢, where ¢ « d. It can be shown that those terms which are
singular at ¢ = 0 exactly cancel each other and the desired result can be obtained by taking
the limit as ¢ - 0.

Integration by parts of eqn (23) and making use of the explicit expression for a3 in
eqns (20) and (4a)—(4c) yields

2 /2
(KD)u(t, v, 8) = ll_r.r(} 20, [;td—(l_-t—rah—/_cﬁ] {w+ (d) (d*—d)'?

2 dw, 0 .
X [; 7 cos® 53 cos? §—C,, sin’ 6j|

Cad
+J‘ w. (h) (d* — )" (o) dh}+0(l)- (24)

I+c

It is convenient to rewrite ¢ in the following manner

1 1 T o(d*—n"?
3@ =) | o =y T

Then, eqn (24) becomes
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. 5w, (hd™
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The complete form of (a4)¥ is shown in Appendix A. The integral in eqn (25) seems
to have a very strong singularity up to power 7/2 in the lower limit, but actually, (af)¥ is
of O(e¥) ase = h—d -0, and

+ 5 wy(hd’?
(V;_(t;)) 00535 :(h( )d)3 (ct)¥ =0(1) as e—0.

Hence, the integral in eqn (25) contains only a square root singularity at the lower
limit and goes to zero as the square root in the upper limit. This term is then suitable for
numerical integration using a suitable Jacobi—Gaussian type quadrature.

The solution in eqn (25) is due to the diffracted field, eqn (20), only. The stress intensity
factor due to the incident field, eqn (19), can be easily obtained as follows:

v (1 —t)
(KlL)i(t: Ues 5) = J’O KlF(m = 0,71 = - ]: =i — ?)6;0 de

<

2\/200t”2w+(d)(d‘—d)”2 <a)2 ' }
Jr(—ajd)?d" [1—2 3 sin? & |.

(26)

Hence, the first-order approximation of the mode I stress intensity factor for the
kinking crack due to the normal loading on the original crack faces is expressed in egn (25)
and the solution for the stress wave loading is the sum of the contributions due to diffracted
and incident fields given in eqns (25) and (26)

Ki = (K)a+ (KD (27

Some special cases can simplify the complicated integral that appears in eqn (25) to
give simple closed form results for eqn (27). This can then be used as a check for the
numerical calculation of the general cases. For the kinking angle § = 0, the crack propagates

straight out of the original crack and eqn (27) will reduce to the solution derived by
Freund[3]

Kt=2 \/ (%)aowox(d) =Kik(d) for 86=0 (28)

where

d
S, (d) (d+cy) (1-a/d)'"’

x{d) =

The function x(d) depends only on the crack speed v, = 1/d and material properties.
The value of x(d) decreases from unity at v, = 0 to zero when the crack speed reaches the
Rayleigh wave speed. x(d) is a universal function of the instantaneous crack tip speed and
Ki is the stress intensity factor for a stationary crack under the same time-dependent
loading. It is worth noting that the solution in eqn (28) is an exact result, without any
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approximation made in this case. Referring to eqn (28), the interesting result is that the
stress intensity factor is independent of the delay time 7, for stress wave loading. In general,
however, the stress intensity factor for the kinking crack does depend on the delay time as
shown in eqns (25) and (27).

It is clear that the most significant time scale involved should be in the region when
the crack kinking has just occurred. The field quantities change very rapidly at this time
period and it certainly plays an important role in the crack kinking events. The instant of
initiation of the kinked crack is at time ¢ = #;+¢, ¢ = 0. For this special case, we have

KF = 2\/(2)00w0x(d)t”2 cos’ g

é
S 37
ix(d) cos 7

(29)
as t— 1.

That is, the stress intensity factor just after the initiation of the kinked crack, given in
eqn (29), has the form of the universal function of the crack-tip speed k(d) times the stress
intensity factor appropriate for the given diffraction process but with no crack-tip motion
times the spatial angular dependence of the stationary crack field.

Mode II stress intensity factor
The mode II stress intensity factor of the kinking crack subjected to a longitudinal
stress wave can be obtained from the boundary condition shown in eqn (22). Following a

similar analysis as in the mode I case, the mode II stress intensity factor due to the diffracted
field, eqn (20), can be expressed as

v(l—lr)/I
(Kia(t,0:,0) = I Kim=—1,n=—r*, t—t")oa,(l,6> du

2 12 c
=2“°[&2(1—f5/21”):| {—m(d)(d* d)'/2 sin 26

wodu, (d)[ . & 30\ wod [ (d*— h)‘”[u,,(d)
Ty (“ ““")*TL h—a)7 | 3(h—d)

2 2
( 8 35) u, (h)d*? ] dh} | 30
sin 5 + sin > )" kh—d) (c5)X +o(1). (30)

Details of (a5,)¥ are given in Appendix A. The mode II stress intensity factor due to
the incident field, eqn (19b), is

vt —t) )
(Kﬁ)i(tavca 6) = J; Kﬁ(’n = 0," == 19t_tl' - ?)ﬁr de

c

(31
2\/200”/2M+ (d) (d*—d)”z a 2 .
Jr (1 —bjd)'2d"? 5/ sin 2.
Hence
Kb = (KBa+ (KD, a2

and immediately after the crack kinks
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Fig. 3.The normalized mode I stress intensity factor vs kinking angle for #; = 0 for different values
of crack speed due to incident longitudinal stress wave Joading.
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2 2

Energy fluxes into the kinking crack tip

For mixed mode I-II fracture, the energy flux into the propagating crack tip can be
written (see Ref. [19] for a general derivation and Ref. [14] for an application) in terms of
the corresponding dynamic stress intensity factors

b2 a?\’? , b2 12 ,
g (i) (-5 wo]

(34)

where

b2 2 a2 172 b2 1/2
R(d) = (?— z) —4(1 —?> (1 -?) .

In the following calculations of E*, the stress intensity factor might show a negative
value. A negative mode I stress intensity factor would correspond to the contact of the
crack faces near the crack tip and in this case, X is set identically equal to zero. Under the
smooth frictionless crack faces assumption, the effect on the negative mode II stress intensity
factor may be ignored.

Numerical results

In order to compare the calculations with other available results[12, 14], we examine
the special case of no finite delay time; that is the crack kinks at the instant the incident
stress wave strikes the original crack tip. Figures 3 and 4 show the dimensionless mode 1
and mode II stress intensity factor for various values of the crack kinking angle § and
normalized crack tip speed v /v, by an incident longitudinal stress wave loading. Note that
for all calculations in this paper, a Poisson’s ratio of 1/4 is used which gives a ratio of wave
speed v, = /3, v, = 1.884v,. The results are nearly the same up to § = 70° when compared
to the calculations in Ref. [14] which also uses the same approximate method. In the range
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d = 70-90°, the above results show a smooth continuous decrease, which agree more closely
with the numerical results in Ref. [12], than the results presented in Ref. [14].

The first-order accurate method used in this paper shows quite satisfactory agreement
with Ref. [12] for ¢; = 0. For kinking angles less than 45°, the error introduced by using
this approximate method is within 2% for the mode 1 stress intensity factor and within 5%
for the mode II stress intensity factor when compared with the results in Ref. [12]. Even
for the high kinking angles, for § near 90°, the error is within 8% for mode I and within
13% for mode I1. The accuracy of the approximate method for the in-plane kinking problem
is similar to that in the anti-planc case[15]. The better agreement for the mode 1 stress
intensity factor than the mode 11 can be explained by Fig. 5 shown in Ref. [12). It shows
the stress intensity factor obtained applying a constant normal (or shear) traction to the
newly kinked crack faces. The results show that the mode [ case has a flatter curve than
mode II in the whole kinking range. This implies that for finite loads on the new crack
faces, the geometry of the corner has less effect on the mode I stress intensity factor at the
kinked crack tip. The effect of the corner geometry on the whole kinking range will be at
most 8% for the mode [ stress intensity factor and-15% for mode IL. These results are
consistent with the accuracy we get by using the approximate method above which ignores
the corner effect.

In order to investigate the stress intensity factor for the whole propagation event of
the kinked crack, the normalized time #;/t is chosen as the parameter. The instant of
initiation of the kink is at £/t = 1, while ,/r = 0 corresponds to the time when the kinked
crack has propagated for an infinite time compared to the delay time. We choose two
kinking angles § = n/8, n/4 and plot the non-dimensional stress intensity factor for mode
I and mode II vs ¢/t for incident normal stress wave loading. The results are shown in Figs
5 and 6. The mode I stress intensity factor is almost constant which shows that K| weakly
depends on the delay time 7. From the result shown in eqn (2.12) (from Ref. [3]), K} is
independent of the delay time for stress wave loading when 6 = 0. We would expect that
for small kink angles this also holds. Hence, the simple expression of the mode I stress
intensity factor shown in eqn (29) can be used to calculate K} for the whole propagation
history of a small kinked angle for any kinked angle for a short time period after the crack
is kinked. The mode II stress intensity factor has a stronger dependence on delay time as
shown in Fig. 6. Note that the results for d = 0 are available in Ref. [3].

The corresponding energy flux into the kinked crack is plotted in Fig. 7. If the maximum
energy release rate criterion is accepted as the kinking condition, then the combination of
the kinking angle and the crack speed can be determined at which the energy flux into the

1.00 T T T T T

¢/d=0.1 0 0.3 x 05 x

ors = 0.7 % 0.9 x y

delay time t, = 0

~0.50 bl 1 1 L 1

-0.4 -0.2 ]

&/m

Fig. 4.The normalized mode 11 stress intensity factor vs kinking angle for ¢, = 0 for different values
of crack specd due to incident longitudinal stress wave loading.
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Fig. 5. The time history of the mode I stress intensity factor for é = n/8, n/4 for different values of
crack speed due to incident longitudinal stress wave loading.
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Fig. 6. The time history of the mode I stress intensity factor for § = n/8, n/4 for different values of
crack speed due to incident longitudinal stress wave loading.

propagating crack tip achieves a maximum value. For the stress wave loading case, the
crack will tend to propagate straight ahead of the original crack with a constant crack speed
v, = 0.56v, which makes E},, = 0.358 for the whole propagating time.

The other loading condition that is also of interest is to apply uniform normal loading
on the original crack faces. The mode I and II stress intensity factors can be obtained from
eqns (25) and (30) as shown in Figs 8 and 9. For this loading case, the stress intensity factor
depends strongly on the delay time. If we neglect the delay time effect as in Ref. [14], we
always underestimate both mode I and mode II stress intensity factors especially in the time
period when kinking has just occurred. The energy flux into the crack tip is shown in Fig.
10. If the maximum energy release rate criterion is applied for this case, the new crack
would again tend to propagate out along the original crack line. The value of E*,, and the
corresponding crack velocity are plotted as a function of #;/¢ in Fig. 11. This result also
indicates that for the crack face loading case, the crack would most likely slow down during
the propagation event. The theoretical prediction for a crack propagating straight ahead is
also observed experimentally[5-8] for crack face loading and for stress wave loading[20].
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Fig. 7. The corresponding energy fiux into the kinking crack tip for Figs 5 and 6.
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Fig. 8. The time history of the mode I stress intensity factor for § = =/8, n/4 for different values of
crack speed due to a normal uniform stress applied to the original crack faces.

MIXED MODE CRACK KINKING DUE TO AN INCIDENT TRANSVERSE WAVE

The incident stress wave is a vertically polarized transverse wave of the form
o, = o H(tv,—2z). (35)

The stress components in the polar coordinate for incident and diffracted fields of the
stationary crack are

Oby = — 0, sin 20 (36a)

ol = g, cos 20 (36b)

1
68 = %(l —cos 20)al. + 5(1 +cos 28)at —sin 20 6}, (37a)
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Fig. 9. The time history of the mode 1I stress intensity factor for § = =/8, n/4 for different values of
crack speed due to a normal uniform stress applied to the original crack faces.
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Fig. 10. The corresponding energy flux into the kinking crack tip for Figs 8 and 9.

1 1
gs, = — 3 sin 20 o', + 3 sin 20 ol 4+ cos 26 ¢!} (37b)

where o', ¢! and o}t are expressed in eqns (9a)-(9c). For the approximate method, the

conditions on the crack faces are the same as shown in eqns (21) and (22) for calculating
mode I and II stress intensity factors. The analysis for the stress intensity factor due to an
incident vertically polarized transverse wave on a kinked crack proceeds in a very similar
manner as discussed in the previous section for the longitudinal wave. We will not repeat
the solution procedure here.

The mode I stress intensity factor is

KT = (K)s+ (KD, (38)
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Fig. 11. Kinking angle and crack tip speeds which make £* maximum during the propagating event
by applying normal uniform stress on the original crack faces.
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(KDy(t,0,0) = 260[ d(12 a/d)] {w+ (d) (d*—d)"* sin 26

Bugdw (d)( . 6 . 38\ wued " (d*—h)"?
- 2 (sm + sin ) . (e =D

2 2
3w, 30 . hd?
X [4:}’1 (‘;)) (sn + sin 2) vl:(h( )d)3 (cbo) :l dh}+o(1) (39)

2/20,4"*w, (d) (d*—d)"*
\/ (1 a/d)l/2d1/2

3 2 o 3
T = — = - 1/2 n o fea
K 3 \/(n)aouox(d)t (sm 7 + sin 2)

(KD)i(t,0,0) = n 2 (40)

and

(41)
3 .6, 3
= —Zfo(d) sm§+sm? as t— .
The mode II stress intensity factor is
Ki = (KIDa+ (KT (42)

172
(KD)a(t,2:,6) = 2%[#%] {—m(d) (d*~d)'"* cos 26

updu., (d) 36\  upd [ (@*—h)"?| u,(d)
N Ak =

o 34 +(d*?
(cos—+3 cos ) l;c(,f )d)3( a,),,:ldh}+o(1) 43)

2 2
2J/20,t{"*u, (d) (d* - d)'*
\/ (l_b/d)llzdllz

(KDi(t, 0, 0) = cos 26 (44)

and
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Fig. 13. The normalized mode I stress intensity factor vs kinking angle for ¢ = 0 for different values
of crack speed due to incident transverse stress wave loading.

1/2
KITI=\/200u0u+(d)(dt) ( ) 35) as 1ot

2/ (1—bjd)" cos§+3c057

(45)

Both (a%,)* and (o7,)* are given in Appendix B. The numerical results of the mode I
and II stress intensity factors for #; = 0 are shown in Figs 12 and 13, respectively. The mode
I results again show a similar accuracy as for an incident longitudinal wave if compared to
Ref. [12]. Reference [14] also obtains the same results for the mode I stress intensity factor.
For mode I, the accuracy is not so good as in the longitudinal stress wave case, especially
for lower crack tip speeds and high kinking angles, but it is in better agreement with Ref.
{12] than Ref. [14].

The stress intensity factors including the delay time effect for kinking angle é = n/8
and n/4 are plotted in Figs 14 and 15. The results again show the weak dependence on the
delay time for small kink angles for an incident transverse stress wave. The corresponding
energy flux into the kinked crack tip is shown in Fig. 16. Using a maximum energy release
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Fig. 14. The time history of the mode I stress intensity factor for 6 = n/8, n/4 for different values
of crack speed due to incident transverse stress wave loading.
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Fig. 15. The time history of the mode 11 stress intensity factor for é = n/8, n/4 for different values
of crack speed due to incident transverse stress wave loading.

rate criterion, the new crack would again tend to propagate straight out of the original
crack with a constant speed v, = 0.675v,, which gives E%,, = 0.84.

DISCUSSION

In this paper, a delay time is included before the initiation of the new kinking crack.
This makes the model a great deal more realistic physically. An approximate method that
ignores the corner geometry of the kink angle is used to construct the mixed mode stress
intensity factor. A very satisfactory result is obtained when compared with the numerical
results[12] with no delay time effect. It is also shown that the stress intensity factor immedi-
ately after kinking can be expressed in the form of a universal function of the crack tip
speed times the stress intensity factor appropriate for the given diffraction process with no
crack-tip motion times a spatial angular dependence which is independent of crack tip
velocity or loading. It is unfortunately not yet clear from experimental results what is a
suitable criterion for a bifurcation event. With these theoretical results for the stress intensity
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Fig. 16. The corresponding cnergy flux into the kinking crack tip for Figs 14 and 15.

factor at hand, an attempt can be made to determine the kink angle and the new kinked
crack speed using different fracture criteria and to compare them with the experimental
results available. For this paper, the maximum energy release rate is adopted for the kinking
criterion, for both the incident stress wave case or applied loading on the original crack
faces case. In either situation, the crack will tend to remain straight.

The complete solutions available for the kinked crack geometry that include the corner
effect are still restricted to no delay time; see Ref. [11] for the theoretical results of the anti-
plane mode and Refs [12, 13] for numerical results of the in-plane mode. There are no other
results that can be used to judge the accuracy of the approximation in this paper when the
delay time effect is included in the whole kinking angle range. It has been shown, that for
é = 0, the results of this paper can reduce to the exact solution in Ref. [3] which also
includes the delay time effect. It is believed that this approximate method still gives quite
good accuracy for small kinked angles. The accuracy of the results presented in this paper
for the stress intensity factor at high kink angles including finite delay time still needs to be
checked by other numerical results, but would also appear to be quite good.

It has been observed in experiments[5-8, 20] for both applied loading on the original
crack faces and incident stress wave loading that the crack will most likely grow straight
ahead of the original crack for some time and then bifurcate or kink. This problem is much
more difficult to solve. The complete stress fields of a suddenly stopping crack must first be
worked out. The stresses along the kinked crack line must then be cancelled by a kinking
crack problem. A similar method to the one used in this paper may then be applied. The
details of these caiculations for mode III will appear shortly.
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APPENDIX A
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APPENDIX B
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